Topology Midsemestral Exam IInd semester 2017 B.Math. (Hons.) IInd year Instructor : B.Sury Maximum marks - 60

Q 1. (3+4+5)

(i) Define the left limit topology on **R** and prove that it is strictly finer than the Euclidean topology.

(ii) Show that \mathbf{R}_l is first countable and separable.

(iii) Prove that \mathbf{R}_l is not second countable.

OR

Q 1. (2+3+3+4)

(i) Show that the only continuous functions from (**R**, Euclidean) to \mathbf{R}_l are the constant functions.

(ii) Prove that the sequence $\{1/n\}$ of real numbers does not converge in the *K*-topology.

(iii) Prove that the sequence $\{-1/n\}$ does not converge in \mathbf{R}_l .

(iv) In the dictionary order topology of $[0, 1] \times [0, 1]$, determine the closure of the subset $\{(1 - 1/n) \times 1/2 : n \in \mathbf{N}\}$.

Q 2.(3+4+5)

(iii) Determine the subspace topology of a non-vertical line contained in $\mathbf{R}_u \times \mathbf{R}_u$ under the product of upper limit topologies.

OR

Q 2. (3+5+4)

Recall that a topological space X is T_1 if, for every pair of points $x \neq y$ in X, there is a neighbourhood of x not containing y and a neighbourhood of y not containing x.

(i) Prove that X is a T_1 -space if and only if, all singletons are closed.

⁽i) If C is a closed subset and U is an open subset of a topological space X, prove that $C \cap U$ is open in its closure.

⁽ii) If S is any subset of a topological space X, prove that the interior of S is the complement of the closure of the complement of S.

(ii) Exhibit a metric space that is T_1 but not second countable.

(iii) Prove that every metric space is first countable.

Q 3. (3+4+5)

(i) Prove that any subspace of a separable metric space is separable.

(ii) Give an example of a subspace of a separable topological space that is not separable.

(iii) Prove that in a second countable topological space, every basis contains a countable subclass which is also a basis.

OR

Q 3. (3+5+4)

(i) On the set $\mathbf{R}^{\mathbf{N}}$ of sequences, define the uniform topology.

(ii) For $n \in \mathbf{N}$, let $f_n : \mathbf{R} \to \mathbf{R}$ be continuous maps.

If $f : \mathbf{R} \to \mathbf{R}^{\mathbf{N}}; t \mapsto (f_n(t))_n$, prove that f is continuous where $\mathbf{R}^{\mathbf{N}}$ has the product topology.

(iii) Give an example where (ii) fails when ${\bf R}^{\bf N}$ is considered with the box topology.

(i) Define the quotient topology and give an example of a quotient map that is not an open map.

(ii) Give an example of a quotient space of a Hausdorff space that is not Hausdorff.

(iii) Prove that the the cone of the (n-1)-sphere $S^{n-1} = \{v \in \mathbf{R}^n : ||v|| = 1\}$ is homeomorphic to the *n*-disc $D^n = \{v \in \mathbf{R}^n : ||v|| \le 1\}$.

\mathbf{OR}

Q 4.(4+3+5)

(i) Let $f : X \to Y$ be a continuous map into a Hausdorff space Y. Prove that the graph of $f(\{(x, f(x)) : x \in X\})$ is a closed subset of $X \times Y$.

(ii) If $q: X \to Y$ is a quotient map that is 1-1, then show q must be a homeomorphism.

(iii) Partition \mathbf{R}^2 into a union of concentric circles centred at (0,0); write $\mathbf{R}^2 = \bigcup_{r\geq 0} C_r$. Prove that $\mathbf{R}^2 \to \mathbf{R}^{\geq 0}$; $C_r \mapsto r$ is a quotient map and the quotient space is homeomorphic to $[0,\infty)$.

Q 4. (3+4+5)

Q 5. (4+4+4)

(i) Show that if Y is a connected subspace of a space X and $Y \subset Z \subset \overline{Y}$, then Z is connected.

(ii) Prove that $I \times I$ under the dictionary order is connected but not path-connected.

(iii) Let $f \in \mathbf{C}[X_1, \dots, X_n]$. Prove that the set

$$\{z \in \mathbf{C}^n : f(z) \neq 0\}$$

is path-connected.

OR

Q 5.(7+5)

(i) Let $Y = \{(x, \sin(1/x) : 0 < x < 1\}$ and, let Z be a arc joining (0, 0) to $(1, \sin(1))$ that does not intersect Y. Prove that $X := Y \cup Z \subseteq \mathbf{R}^2$ is path-connected but not locally connected.

(ii) Prove that \mathbf{R} under the K-topology is connected, but not path-connected.